Properties

This chapter explains a vital kind of relation in the CASTEMO data model: properties, which serve to
attach attributes to entities, and relate entities with one another.

e Properties overview

Properties overview

Definition

Property

Property is the most fundamental and the most versatile relation in CASTEMO knowledge graphs
which connects entities of different kinds.

Any property has:

1. an origin, i.e. the entity to which it is attached,
2. a property type, and
3. a property value.

Properties serve for modelling:

e Adjectives, adjectival expressions, possessives, and appositions (e.g., qualities
and inter-entity relations).
e Adverbs and adverbial expressions (e.g., time, space, and manner of action).

CASTEMO knowledge graphs give priority to the data-collection perspective, and attempt at
creating a general framework for modelling information in the textual resources. That's why it
does not have a comprehensive list of predefined properties but allows coders to fill them during
data collection flexibly and dynamically.

Any entity can have any number of properties.

If an entity has more qualities of the same kind, those will be multiple properties with
the same property type (e.g. if something is yellow and blue, it will have one property for
yellow and the other for blue colour).

In CASTEMO knowledge graphs, a Property is always read with the verb "has".

E.g.:
0 John's hat - [has] - C colour - C black

P Anna - [has] - C son - P Peter

There are two kinds of properties, which have the same structure but differ in the context from
which they are attached to entities.

In-statement Properties

In-statement Properties are attached to entities contextually, from within a Statement - i.e.
they are attached to entities, used as actants of a Statement (in the case of adjectival expressions
and appositions) or actions (in the case of adverbial expressions). Thanks to the position of
Statements in CASTEMO knowledge graphs, such Properties are included in a Territory hierarchy
from which they stem, and usually accompanied with a either an anchor in a full-text document, or
a Reference to the Resource which served for compiling a given Statement.

Meta-level Properties

Meta-level Properties (or, in short, Metaproperties), are properties attached globally rather
than contextually to an entity, and represent general knowledge which applies to all uses of the
entity independently from context. For instance:

P Martha Wood - [has] - C sex - C female

Sometimes, one level is not enough to model a property. E.qg., if Elizabeth Il was Queen of the
United Kingdom from 1952 to 2022, it is important to declare both the role and its temporal span,
e.g. in the following way:

P Elizabeth II - [has] - C office - C Queen of the United Kingdom

PROP - C TRP yyyy-mm-dd: started exactly - V 1952
PROP - C TRP yyyy-mm-dd: ended exactly - V 2022

It is not Elizabeth who has this time span, but her office as queen of the United Kingdom. Thus,
CASTEMO knowledge graphs have second-level properties to be able to attach properties to
properties, and they have even third-order properties to attach properties to properties of
properties.

Technical specification

The data model of CASTEMO knowledge graphs is technically defined in the InkVisitor typescript
*.ts files, which directly correspond to the JSON structure of the collected data in the
corresponding database.

Each entity (e.g. Action) has its own ts file (e.g. action.ts); see the GitHub repository:

https://github.com/DISSINET/InkVisitor/tree/dev/packages/shared/types

| ¥ dev ~ ‘ InkVisitor / packages / shared / types /

@? adammertel and jancimertel 1494 search entities by territoryid (#1503)

actant.ts use namespace to divide enums in shared directory
action.ts add missing interfaces for entities' data subclasses
audit.ts Fix/constructors (#791)

being.ts Add new entity class - living being

concept.ts use namespace to divide enums in shared directory
entity-tooltip.ts Response detail relations (#1413)

entity.ts use namespace to divide enums in shared directory

In the sense of object-oriented design, each specific entity (e.g. location, person) inherits the
definition of the IEntity interface, which is in the entity.ts file. The IEntity is defined as follows:

20 lines (19 sloc) 453 Bytes

import { IProp } from ".";
import { EntityEnums } from "../enums™;

import { IReference } from "./reference”;

export interface IEntity {
id: string;
legacyId?: string;
class: EntityEnums.Class;
status: EntityEnums.Status;
data: any;
label: string;
detail: string;
language: EntityEnums.lLanguage;
notes: string[];
props: IProp[];
references: IReference[];
isTemplate?: boolean;
usedTemplate?: string;

templateData?: object;

Example: location entity "Argentina”

Let's have a location entity with the label "Argentina".

In the InkVisitor GUI, the core entity is displayed like this:

https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/1QEfc7AMGcOkXqmw-image.png
https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/cIbgOCCEWDYrbio8-image.png

L | Argentina |E|

ID b14a5804-b916-4a1d-b9a0-bf50becf7e7 [D]

Entity Type | Location v
Apply Template select template
Legacy ID L000T_R0007
Label Argentina

Detail

Status Ilpending approved discouraged warning |

Label language [atin Y

Logical Type |’defir|ite indefinite hypothetical generlc\:\

In the InkVisitor GUI, the properties which hold its geospatial localisation are displayed like this:

Meta properties

€ | coordinates (lat; long) |32 [v | 48.58188;7.75104 |&] EE a
C | localisation precision | 8Q C | precise | Em a

4+ create new meta property

There is one property record with type-value pair, i.e. Property Type "coordinates (lat; long)" (a
Concept entity, an entity object of type C, which is taken is from the predefined ontology) and the
Property Value, in this case a Value object with the string holding the decimal geographic
coordinate pair. To this first-level property is attached a second-level property defining
"localisation precision" of the stated coordinates, where both values of the type-value pair are filled
with C entities.

For deeper conceptual understanding, the JSON structure can be more revealing, this is a full
entity display:

¥ "root"™ @ {

"class” : "L"

P "data” : {l - o}

"detail” @ ™"

b "entities™ : {e & o}

"id"™ : "b14a5884-b916-4ald-b9a@-bf58bec1f7e7”
"label” : "Argentina”

"language” : "lat”

"legacyId” : "Le&el_Reea7"

P "notes” @ [e s]

P "props” [e e e]
b "references” @ [e s o]

b "relations™ : {e s o}

https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/UBFrbYYc1EdeWflw-image.png
https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/nOOcgPyUDb2zSfMV-image.png
https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/yi6mmf4PN89sJl7b-image.png

The entity has class "L", i.e. it is an entity of type "location", and it has direct attributes, like label
with the value "Argentina" and array attributes like props.

It has one property object in the props attribute. The main information is held in type and value
attributes. And this property object also has one second-level property in the attribute children.

¥ "props” : [
- o

"bundleEnd" : false
"bundleOperator” : "a"
"bundleStart” : false
"certainty” : "@"
b "children™ : [« «]
"elvl®™ @ "3"

"id" : "@B936B57-eff7-4e81-8233-2527cd5246¢ch

ka2

"logic" : "1"
¥ "mood” : [e e]
"moodvariant” : 1"
P "type” @ e . o}

b "walue” @ e s o}

The property object is defined by the class IProp, see prop.ts file.

export interface IProp {
id: string;
elvl: EntityEnums.Elvl;
certainty: EntityEnums.Certainty;
logic: EntityEnums.Logic;
mood: EntityEnums.Mood|];
moodvariant: EntityEnums.MoodVariant;
bundleOperator: EntityEnums.Operator;
bundleStart: boolean;
bundleEnd: boolean;

children: IProp[];

type: IPropSpec;

value: IPropSpec;

export interface IPropSpec {

entityId: string;

elvl: EntityEnums._Elvl;

logic: EntityEnums.Llogic;

virtuality: EntityEnums.Virtuality;
partitivity: EntityEnums.Partitivity;

Second-level properties

https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/CmNZAoj4KE35CIZh-image.png
https://github.com/DISSINET/InkVisitor/blob/dev/packages/shared/types/prop.ts
https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/icV4BPyRbtvUykGs-image.png

In the Argentina example above, the coordinates property record has one property object which
extends the information.

¥ "children" : [1 item

P08 {e e} 12 items

This object is a normal instance of the IProp class. This means that its primary information is in
type and value attributes. These hold IPropSpec objects, which refer to two concept entities, e.g.
here, "localisation precision" and "precise".

¥ "children" : [1 item
v @ : { 12 items
"bundleEnd” : false

"bundleOperator™ : "a"

"bundleStart™ : false

"certainty” : "e”

» "children” : [] @ items

"elvl™ : "3"

"id"™ : "5a3286e84-f7f6-4444-9575-d3d77599271e"
"logic" : "1"

» "mood™ : [« s] 1 ifem

"moodvariant™ : "1

¥ “type” : {e s o} 5 ifems

¥ "wvalue™ : {« e o} 5 items

https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/dqv5Mj5VkwpJXZ7w-image.png
https://docs.religionistika.phil.muni.cz/uploads/images/gallery/2023-01/YePCqxu15pHi9VNK-image.png

